

ERROR ESTIMATES OF STABILIZED GALERKIN-CHARACTERISTICS FINITE ELEMENT SCHEMES FOR INCOMPRESSIBLE FLOW PROBLEMS

Hirofumi Notsu¹ and Masahisa Tabata²

¹ Waseda Institute for Advanced Study,
Waseda University, Tokyo 169-8555, Japan
h.notsu@aoni.waseda.jp

² Department of Mathematics,
Waseda University, Tokyo 169-8555, Japan
tabata@waseda.jp

Key words: *The Navier-Stokes equations, The Oseen equations, Characteristics method, Stability, Error estimates.*

In this paper stabilized Galerkin-characteristics finite element schemes for the Oseen and the Navier-Stokes equations are mathematically analyzed. Stability and convergence results with optimal error estimates for both of the schemes are proved.

They are combined finite element schemes with a characteristics method, cf. [1], and Brezzi-Pitkäranta's (pressure-) stabilization [2]. The idea of the characteristics method is to consider the trajectory of the fluid particle and discretize the material derivative term along the trajectory. The procedure is natural from the physical point of view and the method works well for convection-dominated problems. Moreover, the matrix of the derived system of linear equations is symmetric and we can use efficient iterative solvers for symmetric linear systems. Brezzi-Pitkäranta's stabilization has been originally proposed for the stationary Stokes equations and is one of the simplest stabilized methods. We note that it enables us to use a cheap P1/P1-element and keeps the symmetry of the system of linear equations.

Many characteristics schemes combined with finite element and finite difference methods are considered and analyzed, e.g., [3, 4]. In [5] we have proposed a stabilized Galerkin-characteristics finite element scheme for the Navier-Stokes equations, while its mathematical analysis has not been completed at that time. Here, in addition to the scheme we consider a corresponding stabilized Galerkin-characteristics finite element scheme for the Oseen equations, and show stability and error estimates for both schemes [6, 7]. The main difference between the Oseen and the Navier-Stokes equations is nonlinearity whose effect appears in the main mathematical results as follows. The scheme for the Oseen equations

is unconditionally stable and its error estimates are optimal. On the other hand, the scheme for the Navier-Stokes equations is conditionally stable and its error estimates are optimal under that condition.

We prove the main results of the scheme for the Oseen equations by the Gronwall inequality in the framework of L^2 -theory. The nonlinearity of the Navier-Stokes equations is overcome by the mathematical induction, while a condition between time increment and mesh size is required.

Two and three-dimensional numerical results are shown and the numerical convergence orders are recognized to be consistent with the theoretical results. Consequently, the schemes lead to efficient computation especially in three dimensions, which produces mathematically sound and numerically good solutions.

REFERENCES

- [1] Pironneau, O (1989) *Finite Element Methods for Fluids*. John Wiley & Sons, Chichester.
- [2] Brezzi, F, Pitkäranta, J (1984) On the stabilization of finite element approximations of the Stokes equations. In W. Hackbusch editor, *Efficient solutions of Elliptic Systems*, Vieweg, Wiesbaden:11–19.
- [3] Notsu, H, Tabata, M (2009) A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier-Stokes equations. *Journal of Scientific Computing*, **38**:1–14.
- [4] Notsu, H, Rui, H, Tabata, M (2013) Development and L^2 -analysis of a single-step characteristics finite difference scheme of second order in time for convection-diffusion problems. *Journal of Algorithms & Computational Technology*, **7**:343–380.
- [5] Notsu, H, Tabata, M (2008) A combined finite element scheme with a pressure stabilization and a characteristic-curve method for the Navier-Stokes equations. *Transactions of the Japan Society for Industrial and Applied Mathematics*, **18**:427–445 (in Japanese).
- [6] Notsu, H, Tabata, M (2013) Error estimates of a pressure-stabilized characteristics finite element scheme for the Oseen equations. WIAS Discussion Paper, No.2013-001. Available at: <http://www.waseda.jp/wias/achievement/dp/data/dp2013001.pdf>.
- [7] Notsu, H, Tabata, M (2013) Error estimates of a pressure-stabilized characteristics finite element scheme for the Navier-Stokes equations. WIAS Discussion Paper, No.2013-002. Available at: <http://www.waseda.jp/wias/achievement/dp/data/dp2013002.pdf>.